
8/1/04

Center for Information Technology Integration

NFSv4 for Parallel File Systems

Statement of work

CITI proposes to extend its Linux NFSv4 reference implementation to meet the mutual
objectives of Polyserve and the University of Michigan. The following tasks result from
discussions between CITI and Polyserve technical staff.

Task 1: Enable symmetric NFSv4
servers on a single parallel file system

The goal of this task is to export the
parallelism of an underlying file system
through independent parallel NFSv4
servers.

Here, the NFSv4 servers see an identical
underlying parallel file system. In this
task, we make some simplifying
assumptions:

• The underlying parallel file system
provides data and lock coherency
guarantees.

• An NFSv4 client mounts a single
NFSv4 server.

• We are not concerned with
replication, migration, or failover.

However, NFSv4 locks across multiple
servers must provide appropriate
guarantees to clients.

Our proposed approach to this task is to
identify the appropriate VFS calls
necessary for supporting a parallel file
system, implement and test them, work
with others in the Linux community to
refine the architecture, and make
appropriate implementation changes.

The resulting prototype is the principal
deliverable for this task.

To identify the appropriate VFS calls, we
will analyze NFSv4 server state and
determine those state elements that
require support from the underlying file
system. Our preliminary analysis
indicates VFS support is needed to set
and get two elements:

• share/deny rights, and
• delegation state.

CITI will implement the VFS extensions
and test them with a freely available
parallel file system such as PVFS2. At
the same time, Polyserve will implement
the extensions to its file system.

With a candidate architecture in hand,
CITI will reach out to other stakeholders
in the Linux parallel file system space.
Their feedback will be reflected in
changes to the architecture and
implementation.

Task 2: Client migration and server
failure recovery

In this task, we will address the problem
of moving the responsibility for serving a
file system from one NFSv4 server to
another. As a tactical matter, we
propose to use the standard NFSv4
server reboot recovery and the client
state reclaim mechanism to expedite the
implementation. In combination, these
will provide reboot recovery, file system
migration, client migration, and failover.

Anticipating a delay in universal
commercial support for FS_LOCATIONS, we
propose to implement this feature
emulating Polyserve’s NFS migration

NFSv4 server

parallel FS

NFSv4
clients

NFSv4 server

parallel FS

NFSv4
clients

NFSv4 server

parallel FS

NFSv4
clients

- 2 -

mechanism that transfers the IP address
for a logical NFS server from one
physical server to another. However,
CITI’s approach will work with
FS_LOCATIONS as well, should that be
available and desirable.

The first subtask is to complete the
implementation of reboot recovery on
the Linux NFSv4 server, as specified in
RFC 3530, namely storing ClientID state
and associated lease information to
stable storage and retrieving it on
reboot. This allows a server to recognize
valid reclaim requests, i.e., ClientIDs that
it had been serving.

We need to invent a mechanism that
allows us to “hand off” the valid ClientIDs
from one server to another. We favor
using the underlying shared file system.

We will use the hand-off mechanism to
migrate a client. Polyserve’s current
approach moves the IP address of a
logical NFSv4 server from one physical
server to another. We will support that.

With a working hand-off mechanism, the
client state reclaim and server reboot
recovery mechanisms do the rest.
Moving a group of clients, e.g., those
associated with a logical IP address, is
straightforward, given the ability to
move a single client. For failover, we will
implement a bookkeeping procedure that
associates client state with NFSv4 server
(logical) IP addresses. When a server
fails, the ClientIDs in stable storage can
be handed to a working server.

Implicit in this task is a conversation
between CITI, Polyserve, the Linux NFS
server maintainer, and other
stakeholders to achieve consensus on
flexible mechanism for specifying the
location of stable storage.

The approach outlined here requires no
NFSv4 protocol extensions, allows (but
does not depend on) FS_LOCATIONS, and
allows (but does not require) the
Polyserve strategy of virtualizing the
server IP address for failover. We
believe that this approach will make

migration transparent to applications
running on NFSv4 clients, obviating any
need to suppress I/O failure notifications.

Task 3: Consistent file handles

File handles in NFSv4 are generally
constructed from device-specific
information, such as major and minor
device numbers. In a parallel file
system, this information may be
different on different servers for a given
file. This interferes with the ability to
use a file handle issued on one server to
reference a file via another server, as the
latter server may use different device
numbers.

This issue is under discussion by Linux
kernel implementers – see

http://cgi.cse.unsw.edu.au/~neilb/
NFSserver/01084406486

In this task, CITI and Polyserve will
participate in the discussion. CITI will
prototype viable solutions and work with
Linux kernel maintainers to promote a
solution compatible with Polyserve’s
requirements.

Task 4: Administrative tools for client
migration

In this task, we will build tools for
managing client/server associations.

One tool will construct FS_LOCATION
referrals to construct name spaces and
manage client migration. We favor a
solution that provides fine-grained
management of referrals, at the level of a
single client and a single file system
(FSID).

Another tool will cause a client to
migrate from one server to another.

There are many options to consider;
discussions with Polyserve and the
Linux community will guide the design of
the interface and implementation.

This task depends on the completion of
FS_LOCATIONS and the way they are

- 3 -

implemented, as well as on joint
decisions made by CITI and Polyserve.

Task 5: Server-side named attributes

In this task, we will complete the server-
side implementation of named attributes,
as specified in RFC 3530. The
implementation will be independent of
Linux inode structures and will allow the
registration of a named attribute
interface on a per-file system or per-file
system type basis.

Task 6: Test bed construction and
maintenance

To accomplish the tasks outlined above,
CITI will need to build a test bed that is a
subset of the figure above. CITI will
provide NFSv4 clients drawn from its
existing pool of hardware resources.

CITI proposes that Polyserve equip CITI
with two nodes for running NFSv4 over a
parallel file system (subject to
discussion, but PVFS2 stands out for a
number of reasons). CITI will also need a
storage back end for the parallel file
system to serve.

Further discussions may determine that
CITI also needs a working Polyserve
installation for testing. CITI proposes to
identify the hardware needs of the
project in continuing discussions with
Polyserve and that Polyserve lend the
necessary equipment to CITI or provide
funds for its acquisition.

From experience with similar projects,
we can say with some assurance that the
hardware test bed will require significant
attention by a skilled technologist.

