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Distributed filing in the Grid

Grid computing is characterized by ultrafast computers connected via ultrafast networks.  Distributed computations now being planned, such as the ATLAS LHC experiments, anticipate producing several terabytes each day and distributing this in petabyte-scale Atlas data stores around the world. 

Based on software and human processes, Grid data management technologies can not keep pace with hardware-driven advances in processing, network, and storage.  Today's state of the art in Grid data management is parallel FTP driven manually or by scripts.  FTP has the advantage of a long history, a strict and simple standard, and vendor support across the board.  However, FTP has some fundamental inadequacies, such as its protection model, which uses a login/password pair to initiate a session, and seems to require global agreement on a name space for all Grid users. 

In this note, we review the terminology and goals of distributed file systems and identify viable alternatives for distributed filing in the Grid.

Overview of file systems

The ability to store data permanently has always been fundamental to information technology.  The file system is the part of an operating system that offers permanent storage.  To allow files to be shared and reused, the file system arranges stored objects in such a way that they can be named.  The file system is obliged to guarantee that a file and its name will exist from the time that it is created until the time that it is destroyed.

A local file system is one that resides entirely on one computer and is accessed from that computer.  Local file systems using magnetic disk is fast, inexpensive, and reliable.  Technology advances have made hundreds, even thousands of megabytes available on credit card sized devices, so that one's personal files can be carried in a purse or a shirt pocket.

Notwithstanding these advantages of local file systems, there are many disadvantages of entrusting storage to local file systems.  A major concern is the security and integrity of data.  A file system carried in a shirt pocket risks loss or corruption.  Important data must be backed up onto archival media at regular intervals to insure against loss, but the sad fact is that most individuals do not care to be saddled with system administration.

Another problem with local file systems is the clumsiness associated with sharing.  When many users share a single computer, file sharing can be easy and natural, but in an environment such as the Grid, which is rich with distributed computers, sharing files entails exchanging disks or tapes, or explicitly transferring copies of files among users on a network.  The proliferation of copies can make it quite a challenge to determine the current copy.  
We now turn to trends in distributed file systems, which support transparent access from disparate, interconnected computers.  Distributed file systems are usually based on client/server technology.  Some research systems employ peer-to-peer sharing to realize unusual goals such as censorship resistance.  These systems are not yet within the scope of mainstream Grid computing, and we do not consider them further... 

Consistent sharing

Concurrency control in local file systems is relatively simple, as all of the action happens in one place.  For example, the UNIX file system, typical of native file systems running on a single computer, offers a "shared memory" view to applications: file changes are immediately visible to all at arbitrarily fine granularity.  UNIX accomplishes this feat by sharing a memory cache of file contents among all applications.  UNIX serializes access through the system call interface; the last writer wins any race.  Of course, lock support is available to applications that have to take concurrency control seriously.

Not incidentally, the UNIX buffer cache also greatly speeds access to files.  In distributed file systems, client caching serves a similar purpose, serving the needs of both consistency and performance.  Fine-grained sharing can be maintained, but at substantial complexity and cost, so distributed file systems usually take a step or two back from the pure UNIX model.

One direction is "open/close" semantics, where updates are visible only when a file is opened, and changes propagated only at close.  Open/close semantics eliminates many of the file reads and writes by clustering operations on very large buffers, possibly as large as the whole file.  Naturally, client caching goes hand in hand with open/close semantics.

Another compromise in the interest of performance is the amount of state maintained by the file server.  In the extreme, a file server might emulate a UNIX file system, and keep track of all of the file system activity of its clients.  This becomes a huge burden when the clients are remote.  Furthermore, failure recovery in a system with a lot of distributed state is hard; in the interests of robustness, distributed file servers must manage state very carefully.

Availability

In some sense, availability is at odds with concurrency control.  The usual way to increase availability is replication.  However, when writers are competing, i.e., when concurrency control is needed the most, the existence of multiple storage sites can lead to complicated and expensive algorithms and extra delays.  Some distributed file systems support a limited, read-only form of replication.  Of course, eliminating writers greatly limits problems with concurrency control.

Scalability

When considering the scalability of a distributed file system, our first concern is the effect of scaling on client performance, as that is what is immediately visible to users.  Nevertheless, clients also experience server performance bottlenecks, which are visible as latencies or timeouts, so both client and server scalability must be kept in mind. 

Clients outnumber servers in any distributed filing environment, so exploiting client resources is fundamental to scalability.  For a distributed file system to scale well, it must exploit the resources of clients.

Just as replication complicates concurrency control, replication can exacerbate scalability.  Additional storage sites increase the amount of work servers must do to maintain a consistent file system state.  Similarly, clients of a replicated system may find they have more work to do when performing updates.

Failure recovery in a system with a lot of distributed state is also a tough problem; in the interests of robustness, distributed file systems must manage shared state very carefully.

Location Transparency

Distributed computing enables greater user and application mobility; with ubiquitous access to computers and networks, a user's physical location becomes irrelevant.  Yet, as we have seen, access to files is among the most important services of a computing environment.  To achieve the goal of location transparency, it's necessary to offer a file system that looks the same from all sorts of places.  While a shirt pocket file system can solve the problem, this also has the disadvantages we outlined.  Distributed file system offers a different approach to location transparency.  Of course, as we shall see, it has its own advantages and disadvantages.

Naming
For transparency, names in distributed file systems should match those in native file systems as closely as possible.  Hierarchical naming is prevalent in the local name space, so the same holds for names of distributed files.  Constructing hierarchies entails grafting, or mounting subtrees onto one another.  A major design point is whether the mount points are maintained on file system clients or on the file servers, and how name changes are distributed after updates.  
Access Control
Like the namespace, a distributed file system tries to support access control mechanisms comparable to native ones.  For this to work, it's necessary to have agents acting externally to authenticate and identify users, i.e., the processes acting on their behalf.  
In file systems that support multiple users, the granularity of access control varies widely.  UNIX offers limited support to sharing through its groups facility.  In distributed file systems, “world-readable” can take on literal meaning.  Group management more directly under the control of users is very useful in large-scale file systems.  However, the ability of one user to add another to an access group hinges on the ability of users to locate and specify others.
Candidates for a Grid File System
FTP

FTP, the hoary old Internet standard for file transfer, continues to play in important role in access to remote data, notwithstanding its many limitations.  Its major advantages are its essential malleability and universality.  With many implementations to choose from, virtually every platform offers FTP.  Furthermore, open source implementations are commonplace, which makes FTP a suitable candidate for research and experimentation.  FTP makes no demands on infrastructure beyond access to TCP/IP networking, but extensions abound, including Kerberos and PKI authentication, parallel network extensions, direct file system integration, and desktop GUIs such as drag-and-drop.  

NFS
One of the earliest commercial distributed file systems, and certainly one with the broadest early appeal, was Sun Microsystems' NFS.  NFS has several architectural features that have become commonplace among open distributed file systems, but were very innovative in their day.  First, it is an open system: from the start, the NFS protocol was specified in publicly available documents in sufficient detail that it could be independently implemented from the specification.  Second, NFS engineers invented an operating system interface to the file system that allows multiple underlying implementations to co-exist.  This layer, called the Virtual File System, or VFS, has been used to support a broad range of local and distributed file systems in UNIX, such as DOS floppies, NTFS partitions, ISO 8660 CD-ROMS, etc..  Third, NFS is defined in terms of a remote procedure call (RPC) abstraction, and is implemented in a RPC software package.  Finally, the NFS RPC package includes an external data definition language called XDR that supports passing structured information among computer systems built from heterogeneous hardware and software.
NFS Implementation
The implementation of a VFS-based file system is straightforward: each VFS operation – open, close, read, write, etc. – is implemented as a procedure call to an underlying file system implementation.  In NFS, this procedure call is implemented as an RPC from the file system client to the NFS server.  The file server processes the request by executing calls to the local file system and returns the status and data associated with the operation to the client that issued the request.  For structured data, such as binary integers, NFS uses an external data representation that provides for architecture-independent formats.
Client and Server Issues
The NFS protocol has been carefully designed so that the server needs no special bookkeeping for each client.  This property, called statelessness, simplifies the implementation of the server and has other benefits.  The major advantage of a stateless server is easy recovery from server crash.  Each client request can be serviced without regard to previous requests, so client requests following a server restart can be serviced in the ordinary way.  NFS clients are generally implemented in a way that lets them be extremely patient in the face of an unresponsive server; the client simply retries the request forever until the server responds to it.  That's all there is to NFS server crash recovery.  Moreover, because an NFS server is stateless, there is nothing special to be done about client failure, since there are no data structures or other information fir the server to clean up.
However, a stateless server makes client caching difficult to get right.  If a client caches information the contents of a file, it must check with the server before each use to ensure that the file has not changed since the last use.  Because the use of a cached file by a client entails that the server perform some work on the client's behalf, the performance benefits of client caching are not totally realized.  In fact, many NFS clients take steps to improve performance by assuming that cached data are valid for a certain period.  It is common to see NFS client implementations that decline to check for file content changes if the file was checked within the last three seconds or for directory changes if the directory was examined in the last thirty seconds.  These implementation details can have grave consequences if the optimism inherent in the implementation is unwarranted.
An NFS server exports portions of a hierarchical name space.  A client then grafts these hierarchies together under its own directory structure.  For example, one NFS server might export /user and /source, while another exports /applications.  An NFS client may graft these together in any way it sees fit, including mounting one NFS hierarchy within another.
AFS
At about the same time that Sun Microsystems was preparing NFS for the marketplace, the Information Technology Center at Carnegie Mellon University had formed to produce an academic distributed computing environment called Andrew, after Messrs Mellon and Carnegie.  The file system that grew out of this effort, Vice, was later renamed AFS.  Many of the ITC technical staff departed to form the Transarc Corporation, which developed and marketed AFS for about a decade before the product was terminated and the source code made freely available.
AFS has much in common with NFS architecturally: clients use the Virtual File System interface to access AFS files; AFS is based on a remote procedure call paradigm; AFS even uses the same external data representation format as NFS.  The major difference that AFS introduced to the marketplace is sweeping support for client caching.
Callbacks
AFS engineers discovered that Vice file server spent a substantial amount of time servicing cache validation requests.  NFS tries to avoid such requests by assuming that cached information remains valid for a certain period after it has been validated.  AFS designers were looking for more concrete guarantees.
The solution they came up with is the callback promise.  When a client fetches information from a file server, the information comes with a promise that the server will contact the client if the information changes.  When a client stores a modified data object on a server, the server informs any other client holding a copy of the object in its cache that its cached copy is no longer valid.  In this way, the server revokes the callback promise when the cached information is modified.  If a client wants to use cached information, it checks to see if it has a callback promise for the cached object.  If so, the client is assured that the cached information remains current, and may use the information with no server intervention.  If the callback promise is broken or has expired, the client performs much like an NFS client at this point: it retrieves the version number of the cached object, and if need be, the object itself.
Obviously, an AFS server is not stateless.  An AFS server is forced to keep track of its outstanding promises so that callbacks can be revoked when necessary.  To avoid becoming overwhelmed by callback management, an AFS server attaches an expiry to each callback promise.  Furthermore, an AFS server is free to revoke callback promises with abandon, should the overhead of maintaining a large amount of state information become overwhelming.
Crash recovery is complicated by the AFS server's cache invalidation mechanisms.  When an AFS server restarts, it has no record of the callback promises it made before the crash.
Global Name Spaces

AFS groups an organization’s file servers and clients into an AFS cell.  All AFS clients in all cells share a single, consistent view of the global AFS name space.  Global naming of users is accomplished via Kerberos user@realm style names; some administrative procedures, which do not scale well, are required to allow one cell to authenticate and authorize a user from another cell.
Storage Management

AFS clusters files into volumes.  Copies of volumes can be made quickly without interrupting file activity; copy-on-write allows incremental modification to the original volume while the copy is being backed up to tape or copied to another server for load-balancing purposes.  Multiple read-only copies of a volume may be distributed among file servers in a cell to increase availability; atomic updates to all copies are made via a single administrative command.  Volumes may be moved from one server to another while being used, without interrupting file activity and without namespace changes.  This storage management strategy is of major benefit to systems administrators, who otherwise must choose between backing up a live filesystem or making it unavailable for lengthy periods of time, and who must manage namespace changes in an ad-hoc manner as filesystems are moved.
AFS provides much of this functionality via its own back-end filesystem, so AFS cannot be used to export native filesystems resident on the server, nor is it possible for client processes running on the server to access the AFS data it stores.
NFSv4

In 199x, Sun turned control of the NFS protocol over to the IETF, which has led to a major new version of the protocol, NFSv4.  NFSv4 attempts to resolve the limitations in earlier versions that inhibited the use of NFS in wide-are networks.  The five major differences in NFSv4 are delegation, security, locking, name space, and compound RPC.
Delegation

To improve consistent sharing, NFSv4 provides a mechanism by which a client can be granted control over a file.  When control is delegated in this way, all client accesses can be satisfied by a locally cached copy of the file, and consistent access is assured.  

A file can be delegated to a client in two ways.  If a set of clients is accessing a file and all have the file open for reading, then each client can be granted a delegation for read access.  At their option, clients can then cache a copy of the file and use that cached copy with confidence that its contents are fresh.  Locking (for read) can also be handled locally.

If there is a single client accessing a file, it can be granted a write delegation.  All client accesses, including write locks, can then be handled locally.  
If the conditions for delegation are violated, e.g., if a client makes a request to open a file for writing and if that file is delegated to other clients, then the delegations are revoked before the new open is completed.  To support revocation, clients must maintain a callback listener, as in AFS.  Subsequent access to the file follows the earlier rules for NFS consistency, i.e., consistent access is accidental.  

Delegation is optional and does not provide the strict guarantees necessary for consistent access, because clients lack an API for determining if a delegation is valid.  Consistent access can be guaranteed only with locks.  However, delegation combined with locking provides a high-performance solution to the most common case, in which the requirements for delegation are satisfied.  In this case, lock management is local, avoiding the complexity and overhead of managing distributed locks.  

Security
Security in NSF is provided by ONC, the RPC layer, which allows the selection of a security flavor.  Although security flavors for ONC abound, many of them have deep security flaws and no strong security flavor is mandated.  As a result, it is unusual to find an NFS installation that uses a security flavor other than AUTH_UNIX, i.e., clients and servers implicitly trust one another, offer no cryptographic integrity or authentication guarantees, and encrypt nothing.

NFSv4 fixes this by requiring an Internet standard extension to ONC called RPCSEC_GSS.  This marries the Internet standard GSS API to ONC.  The NFSv4 standard also requires two mandatory GSS security flavors, one based on Kerberos V and the other on an Internet standard public key protocol that makes few infrastructure demands.
Locks
Until NFSv4, locks have had their own protocol.  Not all vendors support the lock protocol and there are chronic interoperability problems.  NFSv4 fixes this by incorporating the specification of locks directly in the RFC.  No longer is lock support optional, and testing at NFSv4 bakeoff events assures interoperability.

Global name spaces
NFSv4 offers support for two vexing aspects of naming: global naming of files and global naming of users.  For the former, NFSv4 defines a server-controlled mechanism that dictates the placement of NFSv4 mounts in a client name space.  With suitable agreement on conventions, NFSv4 may end up with world-wide agreement on names similar to AFS (which also relies on agreement to a convention).  For global user names, NFSv4 defines names as arbitrary strings interpreted according to client/server agreement.  This will support Kerberos user@realm style and X.509 distinguished names and is easily extensible.
Compound RPC

Every distributed file system suffers from network latencies and tries to ameliorate the problem through clever caching.  NFSv4 goes further by defining an extended RPC mechanism that allows bundling multiple RPC requests in a single network transit.  For example, an “open” RPC might tack on a read request for the initial part of the file, or a lookup request might be extended to request metadata for all the files in the containing directory.

Characteristics of Grid file systems

In this section, we look how Grid file systems match up to the needs of Grid computing.

	
	Consistent sharing
	Granularity of sharing
	Wide area performance
	User management
	Storage management
	Extensibility

	FTP
	Clumsy at best.  Inconsistent caching is the rule, not the exception
	File
	Excellent.
	No support.
	No support.
	The simple model makes it easy to fit FTP in a number of contexts.

	NFS
	Good but not perfect consistency.  Places unreasonable demands on a WAN.  
	Byte
	NFS over TCP gives excellent WAN performance but the consistency management protocol is excessively chatty.
	NIS can be used in some environments, but this does not extend easily to a global Grid.
	Native server filesystems are accessible remotely, but no other storage management is provided.
	None

	AFS
	Good consistency for the usual cases.  Locks exist, are never used, and may not work as advertised.
	File
	Good.  Rx, the UDP-based AFS RPC, is good engineering but is showing its age.
	Kerberos is excellent for enterprise scale directory, but AFS still uses Kerberos IV.  
	Excellent.  Volumes may be replicated and moved without namespace changes or user disruption, but native server filesystems are not accessible.
	None

	NFSv4
	Excellent.  Support for POSIX-style and Microsoft share locks.
	Byte
	NFSv4 over TCP gives excellent WAN performance.  Delegation and compound RPC show promise for further improvement.
	Excellent support for PKI and Kerberos V.  Interoperability tools such as KX.509 extend NFSv4 across most authentication boundaries.
	Not a protocol issue.  Storage management is viewed as a vendor value-added offering.
	The NFSv4 protocol allows minor version numbering, which offers a controlled mechanism for extensions.
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